7 research outputs found

    An investigation into adaptive power reduction techniques for neural hardware

    No full text
    In light of the growing applicability of Artificial Neural Network (ANN) in the signal processing field [1] and the present thrust of the semiconductor industry towards lowpower SOCs for mobile devices [2], the power consumption of ANN hardware has become a very important implementation issue. Adaptability is a powerful and useful feature of neural networks. All current approaches for low-power ANN hardware techniques are ‘non-adaptive’ with respect to the power consumption of the network (i.e. power-reduction is not an objective of the adaptation/learning process). In the research work presented in this thesis, investigations on possible adaptive power reduction techniques have been carried out, which attempt to exploit the adaptability of neural networks in order to reduce the power consumption. Three separate approaches for such adaptive power reduction are proposed: adaptation of size, adaptation of network weights and adaptation of calculation precision. Initial case studies exhibit promising results with significantpower reduction

    Power Aware Learning for Class AB Analogue VLSI Neural Network

    No full text
    Recent research into Artificial Neural Networks (ANN) has highlighted the potential of using compact analogue ANN hardware cores in embedded mobile devices, where power consumption of ANN hardware is a very significant implementation issue. This paper proposes a learning mechanism suitable for low-power class AB type analogue ANN that not only tunes the network to obtain minimum error, but also adaptively learns to reduce power consumption. Our experiments show substantial reductions in the power budget (30% to 50%) for a variety of example networks as a result of our power-aware learning

    Power scalable implementation of artificial neural networks

    No full text
    As the use of Artificial Neural Network (ANN) in mobile embedded devices gets more pervasive, power consumption of ANN hardware is becoming a major limiting factor. Although considerable research efforts are now directed towards low-power implementations of ANN, the issue of dynamic power scalability of the implemented design has been largely overlooked. In this paper, we discuss the motivation and basic principles for implementing power scaling in ANN Hardware. With the help of a simple example, we demonstrate how power scaling can be achieved with dynamic pruning techniques

    Behavioral Simulation of Biological Neuron Systems in SystemC

    No full text
    The investigation of neuron structures is an incredibly difficult and complex task that yields relatively low rewards in terms of information from biological forms (either animals or tissue). The structures and connectivity of even the simplest invertebrates are almost impossible to establish with standard laboratory techniques. Recent work has shown how a simplified behavioural approach to modeling neurons can allow “virtual” experiments to be carried out that map the behaviour of a simulated structure onto a hypothetical biological one, with correlation of behaviour rather than underlying connectivity. The problems with such approaches are twofold. The first is the difficulty of simulating realistic aggregates efficiently, and the second is making sense of the results. In this paper we describe a method of modeling neuron aggregates using SystemC (a language developed for hardware design), and also a design interface to enable structures and connection maps to be developed, with simulations carried out leading to animated visualization of the result
    corecore